

Introduction to Geophysics

Prof. Reinhard Drews

Rebecca Schlegel

• Sign up in Alma and Ilias!

Grading Scheme

20% Grade of field report.

80% Written exam at the end of the term.

The report is graded and passing is pre-requiste for the exam. If your grade of the exam is better than the one from the report, *only* the exam will count. Grades will follow the standard scale, scaling is at my discretion.

Part 1: Seismics & Seismology

Ressources: Clauser (2018) Chapter 2; Telford, Chapter 4				
Lecture 1	16.04 (Schlegel)	 Introduction lecture format & scope of applied geophysics Introduction wave-based methods (GPR, Seismics) 		
Lecture 2	18.04 (Schlegel, flipped)	 Wave equation and wave types (body (p,s) & surface) Rays, refraction & reflections (fermat & huygens & snell's law) 		
Lecture 3	23.04 (Drews)	 Principal of seismic data aquis. & interpret of shot gathers Horizontal one layer case (refraction) 		
Lecture 4	25.04 (Drews)	 Multiple and dipped layers (refraction) Application examples 		
Lecture 5	30.04 (Drews)	 Reflection seismics principles Velocity analysis 		
Lecture 6	02.05 (Drews)	 Imaging & migration Application examples 		
Lecture 7	07.05 (Drews)	 Seismology & Earthquake location Fault plane solutions & Application examples 		

How can we study the inner earth?

How can we study the inner earth?

Deepest Borehole so far ~12km in Russia (not used anymore) Deepest Borehole still used: ~9km in Bavaria

"Geophysics is a science that deals with the physical features of the earth's surface and its internal structure" From: Developments in Petroleum Science, 2013

How can we study the inner earth?

- Earthquake in Mosambik in 2006 with 7.5 strength
- Recorded in Japan with over 600 stations
- Clear sign of shear waves travelling through the core

doi:10.1038/nature07131

Many more applications in or outside of academia

- tunnel construction
- geologic structures, e.g. karst
 - ultimate disposal place for radioactive waste
 - natural stone requests (e.g. Marmor for buildings)
 - windfarms
- geothermy
- groundwater
- geoharzards, landslides
- weather and climate phonomen
- observations around vulcanos to predict eruptions

What could your future as a geophysicist look like?

Michael Schwartz, Head of Geophysics, Germany

Emma Pearce, Geophysicist, Glaciologist, British Antarctic Survey, UK

Examples of wave-based methods: Radar

Principle or radar

- Transmission of high frequency pulse (10-1000 MHz) (Neal, 2004)
- Different electrical properties alter the EM velocity
- Abrupt changes in dielectric constants cause a reflection of part of the energy:
 - Density and porosity
 - Water-saturation/ water content
 - Electromagnetic conductivity of the sediment
 - Temperature

• ...

Material	Velocity [m\ns]	Dielectric constant	Attenuation [dB/m]
Air	0.3	1	0
Ice	0.168	3-4	0.01
Fresh water	0.033	80	0.1
Wet Sand	0.06	20-30	0.03-0.3
Dry Sand	0.13	5	0.01

Principle or radar

With knowledge of the velocity the depth (or ice thickness) can be calculated:

$$\mathsf{h} = v * \frac{twt}{2}$$

h= ice thickness

v= propagation velocity
twt= two-way traveltime (recorded time)

Radar data include time it took the wave to travel from transmitter to the icesediment interface and back to the receiver so called **twoway traveltime (twt)**

Receiver

Transmitter

Reflection seismic data acquisition

Reflection seismics:

- Acoustic waves
- 1 source
- Several geophones for recording
- Coverage is limited

Reflection seismic data acquisition

Any Questions?

To-do until Thursday:

• Flipped classroom: Watch video on Ilias