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Problem: What is beneath the surface?

Reference:
Public Domain (credit: Mainconfz)



Problem: Ice-sheet Mass loss

Reference:
NASA/Goddard Space Flight Center Scientific Visualization Studio (NASA/GSFC).



Problem: Evapotranspiration

Discharge

Precipitation Evapotranspiration

Reference:
Van Camp et al., Geophys. Res. Lett., https://doi.org/10.1002/2016GL070534, 2016



Problem: Evapotranspiration

Discharge

Precipitation Evapotranspiration

Reference:
Van Camp et al., Geophys. Res. Lett., https://doi.org/10.1002/2016GL070534, 2016



Learning Goals

Learning goals today:

Understand how the gravity methods maps
spatial and temporal changes in density/mass

Understand the physical background gravitational
force, its potential field

Internalize one measurement principle.



Mapping differences in density

Target

Surface

Sensor

Interaction

Target has a contrast in density.



Mapping differences in density

Target
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Interaction

Target has a contrast in density.



What is a force?

[Newton (1642-1726) / G. Johnson.]

~F = d
dt
~p = m~g

~F : Force (N; kg m s−2)
~p : Momentum (N; kg m s−1)
~g : Acceleration (m s−2)
m : Mass (kg)



The gravitational force

[Newton (1642-1726) / G. Johnson.]

~F = GmM
r2
r̂

G = 6:674 · 10−11 (m3kg−1s−2)
r̂ : unit vector
r : distance between point masses

M

m

r



The gravitational constant

Reference:
Cavendish, The Proceedings of the National Academy of Sciences , 1798



The gravitational constant

Reference:
Westphal et al., Nature, 2021



Specialty of the gravitational force

G is the worst known constant in physics:

The gravitational force cannot be shielded.

It averages over ”comparatively” large areas.



Example: Measuring acceleration

~F = m~g

~F = G
mM

r 2
r̂

M

m

r



Example: Measuring acceleration
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Example: Measuring acceleration

g = G
M

r 2

M

m

r

This is a 1D problem.



Example: Measuring acceleration

g = G
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Example: Measuring acceleration

g = G
M

r 2

d2r(t)

dt2
= G

M

r 2

This is a differential equation.



Example: Measuring acceleration

d2r(t)

dt2
= G

M

R2
E

≈ const:

At the Earth’s surface (RE) g is close to constant and
only vertical. (Later we will see that none of this is
quite true).



Example: Measuring acceleration
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Example: Measuring acceleration

0 2 4 6 8 10

c1

d
dt
r(t) =

R
gdt = v(t) = GM

R2
e
t + c1
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Example: Measuring acceleration

0 2 4 6 8 10

c2

r(t) =
R
v(t)dt = GM

2R2
e
t2 + c1t + c2
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)



Example: Measuring acceleration

r(t) =
GM

2R2
e

t2 + c1t + c2

Setting, e.g., c1 = 0 (initial velocity) and c2 = 0
(initial position) is quite convenient.

By measuring the change of position over time,
the mass of the Earth (M) can estimated (given
that the radius is known.)

This is the principle of a free-fall gravimeter.



Exercises

r(t) =
GM

2R2
e

t2

Go ahead and determine the mass of the Earth
M with your Smartphone!

There is an important first-order finding in Earth
Sciences that you can (re-) discover. Which one?



Vector fields

~g = GM
r2
r̂



Potential Field

~g = GM
r2
r̂



Potential Field

What is the amount of work required?

r



Potential Fields

U(r) = −
Z r

∞
~gd~r

= −
Z r

∞
gdr

= −GM
Z r

∞

1

r 2
dr

= −GM
»
−1

r

–r
∞

= GM
1

r

Potential for a spherical mass.



Potential Fields

~g(r) = − @

@r
U(r) = −∇U(r)

It is sometimes easier to calculate the potential of
an anomaly and to infer the acceleration via the
gradient.

Equipotential lines are perpendicular to the field
direction.



Take aways from this video

X Force, gravitational force/acceleration,
gravitational potential

X Gravity method maps spatiotemporal variability in
density/mass

X Free-fall gravimeters is one measurement
principle

× Spatially distributed structures, sensitivities, data
reduction,..



Problem: What is beneath the surface?

Reference:
Public Domain (credit: Mainconfz)



Problem: What is beneath the surface?

Reference:
Jet Propulsion Laboratory, California Institute of Technology, GRACE-FO (a)



Problem: Ice-sheet Mass loss

Reference:
NASA/Goddard Space Flight Center Scientific Visualization Studio (NASA/GSFC).



Problem: Ice Sheet Mass Loss

You will see the Grace time series in JavaScript enabled PDF viewers such as
Acrobat or Okular.
Reference:
NASA, Jet Propulsion Laboratory (https://grace.jpl.nasa.gov/resources/31/antarctic-ice-loss-2002-2020/) accessed 2022.



Example: Evapotranspiration

Discharge

Precipitation Evapotranspiration

Reference:
Van Camp et al., Geophys. Res. Lett., https://doi.org/10.1002/2016GL070534, 2016



Example: Evapotranspiration

Reference:
Van Camp et al., Geophys. Res. Lett., https://doi.org/10.1002/2016GL070534, 2016



End of Video 1



Learning Goals

Learning goals today:

Understand how different subsurface structures
(e.g. caves, sediment infill of valleys, geometry of
subduction zones,..) appear in gravity datasets.

Understand the principle of forward and inverse
models.

Understand the principle of equivalence.



Problem: What is beneath the surface?

Reference:
Jet Propulsion Laboratory, California Institute of Technology, GRACE-FO (a)



Units

1 Gal = 1 cm s−2 = 0:01m s−2

1 mGal = 0:001 cm s−2 = 0:00001m s−2

1 mGal is about 1 millionth of the mean
acceleration at the Earth’s surface.



Problem: What is beneath the surface?

Reference:
Jet Propulsion Laboratory, California Institute of Technology, GRACE-FO (a)



Example: Shell

[]

Reference:
Xaononl (CC BY-SA 4.0, February 2017)

Newton’s shell theorem calculates the gravitational
field inside and outside a spherical shell.



Newton’s Shell Theorem

The field outside a shell is the same as the one
from an equivalent point mass

The field inside a shell is zero. Everywhere.

This is useful, e.g., for predicting the gravitational
field inside the Earth for different density
distributions (i.e. exercises.)



Gravity anomaly of spherical object in sub-surface

~g

Surface

~g = G
M

r 2
r̂

Gravimeters typically only measure the vertical
component.



Gravity anomaly of spherical object in sub-surface

~g
gz

Surface

„

~g = G
M

r 2
r̂

Gravimeters typically only measure the vertical
component.



Gravity anomaly of spherical object in sub-surface

Surface

~g = G
M

r 2
r̂

Profiling across a sub-surface target results in a
specific shape of the vertical gravity anomaly (→
Exercises).



Exercise: Gravity anomaly of spherical object in sub-surface

Distance along surface (m)

g z
(m

s−
2
)



Beyond point masses

Surface



Beyond point masses

Surface

~g(~r) =
X
i

G
dMi

r 2i
r̂i

For i point masses the effect adds up.
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Beyond point masses

Surface
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Beyond point masses

Surface

~g(~r) = G
R
 1
r2
r̂ dV

The summation can be replaced by an integration over
a volume enclosing a continuous density.



Beyond point masses

Surface

~g(~r) = G
R
 1
r2
r̂ dV

The integration is a triple integral. Integration limits
and coordinates depend on the viewpoint. Example is
a Bouger plate, in general not easy to solve (→
Exercises).



Other shapes

There are analytical solutions for other shapes
(e.g., Nagy 1966 for Prism).

Surface

x
y

z



Forward modelling (→ Ex)

def gravprism(drho, dx1, dx2, dy1, dy2, dz1, dz2):

# gravitational attraction due to "m" prisms at "n" observation point

# x1,x2,y1,y2,z1,z2 are coordinates of edges of prisms relative to

# observation points. They are m x n matrices.

# Downloaded from: https://www.soest.hawaii.edu/GG/FACULTY/ITO/

# Underlying equations stem from a cartesian integration as detailed in:

# Nagy 1966, "The gravitational attraction of a right rectangular prism"

# Geophysics VOL. XXX, SO. 2

gam=(6.6732e-11)*1e5 # mGal m^2/kg #What is this?!

g=0 # This is superfluous?

# Calculate distances to all eight corners of the prisms

R111 = np.sqrt(dx1**2+dy1**2+dz1**2)

R112 = np.sqrt(dx2**2+dy1**2+dz1**2)

R121 = np.sqrt(dx1**2+dy2**2+dz1**2)

R122 = np.sqrt(dx2**2+dy2**2+dz1**2)

R211 = np.sqrt(dx1**2+dy1**2+dz2**2)

R212 = np.sqrt(dx2**2+dy1**2+dz2**2)

R221 = np.sqrt(dx1**2+dy2**2+dz2**2)

R222 = np.sqrt(dx2**2+dy2**2+dz2**2)

# Calculate the gravitational acceleration excerted from each corner (?!)

g111 = -(dz1*np.arctan((dx1*dy1)/(dz1*R111))-dx1*np.log(R111+dy1)-dy1*np.log(R111+dx1))

g112 = +(dz1*np.arctan((dx2*dy1)/(dz1*R112))-dx2*np.log(R112+dy1)-dy1*np.log(R112+dx2))

g121 = +(dz1*np.arctan((dx1*dy2)/(dz1*R121))-dx1*np.log(R121+dy2)-dy2*np.log(R121+dx1))

g122 = -(dz1*np.arctan((dx2*dy2)/(dz1*R122))-dx2*np.log(R122+dy2)-dy2*np.log(R122+dx2))

g211 = +(dz2*np.arctan((dx1*dy1)/(dz2*R211))-dx1*np.log(R211+dy1)-dy1*np.log(R211+dx1))

g212 = -(dz2*np.arctan((dx2*dy1)/(dz2*R212))-dx2*np.log(R212+dy1)-dy1*np.log(R212+dx2))

g221 = -(dz2*np.arctan((dx1*dy2)/(dz2*R221))-dx1*np.log(R221+dy2)-dy2*np.log(R221+dx1))

g222 = +(dz2*np.arctan((dx2*dy2)/(dz2*R222))-dx2*np.log(R222+dy2)-dy2*np.log(R222+dx2))

dg = drho*gam*(g111+g112+g121+g122+g211+g212+g221+g222)

return dg



Forward modelling (→ Ex)



Forward Models, Parameters and Predictions

Forward Model

g( ~m)

~m

parameters predictions

Often deterministic.



Forward Models, Parameters and Observations

Forward Model

g( ~m)

~m

parameters

~d

observations

Often non-unique (i.e. multiple parameter sets
may explain observations). This means
equivalent options need to be considered.



Take aways from this video

X Gravity profiling, gravity anomalies of sub-surface
structures

X Forward modelling (here: Prisms) as a tool for
prediction and interpretation.

X Principle of forward & inverse modelling paired
with principle of equivalence.

× Gravitational field of the Earth, removal of
camouflaging effects...



End of Video 2

End of video 2



Learning Goals

Learning goals today:

A gravity reading gives you an integrated effect of
many processes.

In order to account for a single process (e.g.,
density variability in sub-surface) corrections are
required.



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compons.).
density variability in the subsurface.



Excursion: Spherical coordinates

x

y

r

r̂„̂

„

r̂ points radially outwards.
„̂ corresponds to latitude.



Excursion: Spherical coordinates

x

y

r

r̂„̂

ffî

„

ffî points into or out off the plane.
Direction changes with time during the
rotation.



Latitudinal variability

The Earth rotates with angular velocity ! = 2ı
T .

This results in an inward direction acceleration
component perpendicular to the rotation axis.



Latitudinal variability

The Earth rotates with angular velocity ! = 2ı
T .

This requires as correction as a function of latitude.



Gravitational field of a spherical Earth

Centripedal acceleration at P perpendicular to rotation
axis parallel to O’-P (Exercises):

gr: = !2R cos(„)

Centripedal acceleration at P perpendicular to rotation
axis parallel to O’-P:

gr:;proj: = !2R cos2(„)

Angular Frequency:!

Angular Velocity: ~vr = ~! × ~R cos(„)

Angular Acceleration: ~gr = ~̇vr = ~! × ~! × ~R cos(„)



Latitudinal variability

The latitudinal correction is largest at the equator and
zero at the poles.



Consequence: An ellipsoidal Earth

a1

a2a3

The reference ellipsoid describes the flattening:

a1 = 6357 km
a2 = 6378 km
a3 = 6371 km



Consequence: An ellipsoidal Earth

Due to the ellipsoidal shape the latitudinal
correction is slightly more complicated (but
contains no new physics:)

gn = ge(1 + A sin2(„)− B sin2(2„))

ge statistical reference value at the equator
this forms the basis a reference field relative
to which anomalies can be define.



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compons.).
density variability in the subsurface.



Elevation correction (i.e. free-air)

A B C D E F

Horizontal Distance

Gravity Anomaly



Elevation correction (i.e. free-air correction)

A B C D E F

Horizontal Distance

Gravity Anomaly



Elevation correction

The elevation correction references the gravity
anomaly to the same datum (e.g., the geoid).
How does the gravitational acceleration change
with elevation near the Earth’s surface?



Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) = G
M

r 2



Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) = g(RE) +
dg

dr
|RE

(r − RE) + :::



Elevation correction via Taylor expansion
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Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) ≈ G
M

R2
E| {z }

g at Earth’s surface

−2G M
R3
E

(r − RE) + :::



Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) ≈ G M
R2
E

− 2G
M

R3
E

(r − RE)| {z }
change with elevation

+:::



Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) ≈ G M
R2
E

− 2G
M

R3
E

(r − RE)| {z }
change with elevation

+:::

Evaluation at let’s say r = RE + 1 (m) returns a
change of ‹g(r) ≈ −0:3 mGal per m.



Elevation correction via Taylor expansion

Taylor expansion near r = RE:

g(r) ≈ G M
R2
E

− 2G
M

R3
E

(r − RE)| {z }+:::
‹g(r) ≈ −0:3 mGal per m is large compared to
the sensitivity of gravimeters, therefore the
gravimeter elevation needs to be determined
within centimeters using GNSS.



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compons.).
density variability in the subsurface.



Reduction of gravity data: Terrain correction



Reduction of gravity data: Terrain correction

mass excess

A neighboring mountain will reduce the measured
gz independent of target properties.



Reduction of gravity data: Terrain correction

mass deficit

A neighboring valley will reduce the measured gz
independent of target properties.



Reduction of gravity data: Terrain correction

The terrain correction requires an elevation
model and assumptions about the
broad-scale sub-surface density.
The terrain correction is positive both for
surrounding valleys and mountains.



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compons.).
density variability in the subsurface.



Reduction of gravity data: Gouguer correction

reference surface

Elevation and terrain correction do not yet account for
the mass between the measurement surface and the
reference surface.



Reduction of gravity data: bouguer correction

reference surface

h

What is the effect ‹gz of a horizontal plate with
constant density?



Reduction of gravity data: bouguer correction

reference surface

h

gz = G
R R R 1

r2
cos(ffi)dV =?



Reduction of gravity data: bouguer correction

reference surface

h

gz = G
R R R 1

r2
cos(ffi)dV = 2ıGh



Reduction of gravity data: bouguer correction

reference surface

h

Bouguer anomaly represents the gravitational
attraction of the material below sea level



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compensation),
density variability in the subsurface.



The origin of tides

Tides are caused by gravity celestial bodies
(i.e. Sun & Moon).
Tidal forces vary across a spatially extended
body.
Tidal forces are balanced by centrifugal
forces of two (three) body rotations.



The origin of tides

Moon Earth



The origin of tides

Moon Earth

distance r

F

Gravitational attraction is stronger on the nearside
than the farside.



The origin of tides

EarthMoon

Centrifugal force can be projected into radial (i.e.
parallel to Earth’s gravitation) and parallel component.
This leads to the force balance.



The origin of tides

EarthMoon

Centrifugal force can be projected into radial (i.e.
parallel to Earth’s gravitation) and parallel component.
This leads to the force balance.



The origin of tides

Moon The
lunar gravity differential field is responsible for two
tidal bulges (i.e. tides twice a day).



The origin of tides

Tidal forces vary across a spatially extended
body.

Tidal forces are balanced by centrifugal forces of
two (three) body rotations.

There is lots of confusion regarding the origin of
tides (cf. Matsuda et al. 2015→ Ilias).

Tide models or reference measurements can be
used for correction



Tidal signal in gravimetry

Reference:
Middlemiss et al., Nature, 2016



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compensation),
density variability in the subsurface.



Instrument drift / temporal variability

A B C D E F

Horizontal Distance

Gravity Anomaly



Instrument drift / temporal variability
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Gravity Anomaly



Instrument drift / temporal variability

A B C D E F

offset

Horizontal Distance

Gravity Anomaly



Reduction of gravity data

Every gravity survey measures:
latitudinal variability,
dependency on elevation,
the surrounding terrain,
excess mass above anomaly,
earth & ocean tides,
(instr. drift, motion compons.),
density variability in the subsurface.



Reduction of gravity data

‹gz;reported =‹gz;measured

− ‹gz;lat
± ‹gz;elev
± ‹gz;tides
+ ‹gz;terrain

− ‹gz;bouguer



Reduction of gravity data

‹gz;reported =‹gz;measured

− ‹gz;lat
± ‹gz;elev
± ‹gz;tides
+ ‹gz;terrain

− ‹gz;bouguer

free-air: ‹gz;lat ± gz;elev (±gz;terrain ± gz;tides)
bouguer: free-air + bouguer plate (rel. sea level)



Take aways from this video

X The gravity method integrates over many
processes and data reduction is required.

X Principle of ellipsoidal flattening & tides.

X Representation as free-air or bouguer anomaly
maps.

× Different gravimeter types and applications (e.g.
mapping of Geoid).



END OF VIDEO 3



Learning Goals

Learning goals today:
Gravimeter designs
Mapping and definition of the geoid
Application examples



Gravimeter design

Gravimeters are accelerometers
free-fall, pendulum, springs
satellite orbit perturbations
...



Free-fall gravimeters (→ Ex.)

Reference:
Gneis & Happy SS 2021



Free-fall gravimeters (→ Ex.)

Reference:
S. Wuestney SS 2021



Free-fall gravimeters (→ Ex.)

Reference:
J. Noll SS 2023



Free-fall gravimeters (→ Ex.)

Reference:
Van Camp et al., EOS, 2017 Credit: Olivier Francis



Pendulum-based gravimeters

~g

l

Eigenfrequency & Length.

! =

r
g

l



Pendulum-based gravimeters (→ Ex.)

Reference:
M. Roth SS 2023



Spring-based gravimeters
[cc Reyko, CC-BY-SA3.0]

Springconstant & Extension.



Gravimeters: spring-based

Reference:
Sandeep CC-BY-SA 3.0]



Gravimeters: satellite-orbit perturbation

Reference:
NASA GRACE FO / Jet Propulsion Laboratory



Gravimeters: satellite-orbit perturbation

Watch Video 15 Years of GRACE
https:

//www.youtube.com/watch?v=MaxBOvQ2a_o

https://www.youtube.com/watch?v=MaxBOvQ2a_o
https://www.youtube.com/watch?v=MaxBOvQ2a_o


Absolute vs. relative

Absolute gravimeters are needed
if loop closure if impossible (e.g.
intercontinental surveys),
for long-term changes such as isostatic uplift,
as basestations for relative surveys.

Relative surveys are always easier to conduct
and loop closure can cancel many error sources
(e.g., instrument drift).



Gravimeters

Top absolute gravimeters ∼ 1—Gal (10−9g )
Top relative gravimeters ∼ 10—Gal (10−8g )
Typically only gz is measured.



Application examples: Geoid

Reference:
Result from GRACE-FO (Credit: GFZ Potsdam)



An ellipsoidal Earth

[Ziebart et al., 2004]

Geoid is a real-world equipotential line
approximating sea level.

It is referenced to the geometric ellipsoid.



An ellipsoidal Earth

[Ziebart et al., 2004]

The reference of elevation is a constant source of
confusion.

The geoid defines the local vertical direction.



An ellipsoidal Earth

[Ziebart et al., 2004]

Upwarping of geoid indicates mass excess.

Downwarping of geoid indicates mass deficit.



Application examples: Andes

Reference:
Jet Propulsion Laboratory, California Institute of Technology, GRACE-FO (a)



Application Examples: Andes

(a) Topography.

(b) Measured gz .

(c) Reference gravitational field.

Reference:
From Clauser 2018 (after Schmidt and Götze 2006 in Hackney 2011)



Application Examples: Andes

(a) Free-air reduction

(b) Bouguer reduction

(c) Free-air + Bouguer reduction

Reference:
From Clauser 2018 (after Schmidt and Götze 2006 in Hackney 2011)



Application Examples: Andes

(a) Free-air anomaly

(b) Bouguer anomaly

(c) Isostatic anomaly (assuming 20 km root depth)

Reference:
From Clauser 2018 (after Schmidt and Götze 2006 in Hackney 2011)



Application Examples: Andes

In mountains the elevation correction dominates

A negative Bougues anomaly is indicative or
mountain roots

Isostatic anomaly is not hypothesis free, but
markes the Andes as an active orogen which is
not yet in isostatic equilibrium

Bouguer anomaly map of Germany will be
treated in exercises.



Summary

Take aways from this video:
There are different types of gravimeters
(absolute vs. relative).
The geoid is an important equipotential line.
Bouguer and free-air anomaly maps offer
important insights into sub-surface
structures.



END OF VIDEO 4


