sculur (=> number: Mass; Density; Speed number

vectors <=> Mugnitude / direction: Velocity; Force vector

tensors
magnitude / directiction / place where things happen: stress tenso

Derivatives take different forms in different coordinate systems Thus different shapes > cartesian > spherical > cyeindical

VL 16.05.23

VES perfectly suited to map vertical variability (manalog to refraction seismic without dip) Revertical electrical sounding

VES

How would be notice lateral variability (or lack therefore)?

1) Suggestion: more data e.g. A --- -- B

2) Use half Schlumberger arrays

B " almost equal geometry "

-suitch between A and A' and that is only a cable switch

If horizontal stratification then same readings for A and A¹ If lateral variability those readings will be different

Depth of investigation (DOI)

$$= \delta \frac{1}{2\pi} \left(\frac{x}{(x^{2}+y^{2}+z^{2})^{\frac{3}{2}}} \right) \cdot x + \frac{1-x}{((1-x)^{2}+y^{2}+z^{2})^{\frac{3}{2}}} \right)$$

Now: evaluate at center plane : $X = \frac{L}{2}$

$$j_{x}(x = \frac{L}{2}) \sim \frac{L}{\left(\frac{L^{2}}{4} + y^{2} + z^{2}\right)^{\frac{3}{2}}}$$

L=2 L=3

(enter line: (y=0)

L= 4 ->more current at deeper depth -> current distributes over earger area

Larger L -> Increased depth of investigation

One way of defining DOI: Integrate the total contribution for a given depth interval

21

$$DOI \sim \int_{Z_1}^{Z_2} dy \frac{L}{(z^2 + y^2 + \frac{L^2}{4})}$$
 "double" but "technicae"

Some people chose $z_1 = 0$ (with $z_2 = \infty \rightarrow D01 = T$) others don't hence there are different values inbooks. In all cases Dol depends on array type. In all cases Dol << L Wenner array: Dol~0,12 ("broadly speaking"). The truth is in the forward model.

-12

t2

=) resistivity mapping in that sense is often restricted to <20m

Pseudo - 2D- Profiling

A) \ lemmaic aircail AM	$= \overline{M} \overline{V} \overline{V} \overline{R} - \alpha \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C}$
-Pitter a	
2) get readings while mor	ing (put $ga \sim 0,1a$) x + x + x + x + x + y x + x + x + y y = 100000000000000000000000000000000000
3) reach end an increa	se a t t t t t t but not the real one"
Self-potential	
Self potential method	measures potential differences from natural sources (pussive technique).
(interpretatio	a in the trield. "tricky) Voltmeter and electrodes S
Natural sources:	-streuming potentials (groundwater, see page of dykes)
	-redox potentials (ore expeorations)
	- thermo-potentials (conductivity function of temp.) (geothermal reservoirs)
	-membrane-potentials (sheatigraphy), also contact potential

redox potentials			e- —7			⁷ chemically	driven	
	Ineorobic	zones E		aerobia	Zones 🕣			
strewing opentials	[<u></u>	enet	surface change				
Breening potentia	P1	+ + +	+ + P2	2 •+ lons	Gransported	-> current ->	E-Freed =	, Potential-Treed

·electric douple layer

membrane potentials ·electrocles in borehoee -> contuct potentials • materials different accuptence for e.g. Ocharged lons -> potential differences (no current Plow)

Self-potentiae Neasurement

Stationary Variable

Elarge contact resistence between sticks and subsurface -> dominates

-Ineed non polarizable electroles