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Problem: Sea-ice thickness
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Problem: Sea-ice thickness

– Sea-ice provides a (strong) internal Earth
System feedback via albedo. It is a major
player for formation and decay of Pleistocene
ice sheets.

– Decreasing sea-ice thickness and extent has
commercial applications in, e.g., ship
navigation (cf. drift & noise)

– [Video Dr. Steffi Arndt]
– Problem: How can we determine sea ice

thickness in space (and time)?



Problem: Sea-ice thickness

– Electrical conductivity of ice and ocean water
are hugely different.

– Resistivity mapping will not give us spatial
coverage (ground-coupled)

– A solution without cables and
ground-coupling is required!

– Electromagnetic induction can do this.



Learning Goals

– Understand the principle of EMI
(qualitatively)

– Understand basics of R-L circuits with
low-frequency AC (quantiatively)

– Tools: Oscillations, complex numbers,...



Online Ressources

– em.geosci.xyz
– lecture textbooks (different approaches

exist.)



Physics of electromagnetic induction (EMI)

– Electrical conductivity of ice and ocean water
are hugely different.

– Resistivity mapping will not give us spatial
coverage (ground-coupled)

– A solution without cables and
ground-coupling is required!

– Electromagnetic induction can do this.



Physics of electromagnetic induction (EMI): Faraday’s Law

Reference:
LibreTexts Physics CC-BY SA 4.0.



Physics of electromagnetic induction (EMI): Faraday’s Law

∇× ~E(~x; t) = − @
@t
~B(~x; t) (1)H

@Σ
~E(~x; t) · d~l = −

R
Σ

@
@t
~B(~x; t) · d ~A (2)

Both formulations are equivalent. Both look scary (and
they are!), but they become intuitive for simple
geometries.



Physics of electromagnetic induction (EMI): Faraday’s Law
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R
Σ

@
@t
~B(~x; t) · d ~A (4)

In the following we focus exclusively on the principle
and describe the subsurface with standard parts of
electric circuits. This is enough for our introduction.



Physics of electromagnetic induction (EMI): Faraday’s Law
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Line integral over rim.
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Physics of electromagnetic induction (EMI): Faraday’s Law

I
@Σ

~E(~x; t) · d~l| {z }
EMF (V): measure for energy transfer (no cables!) into the circuit.
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Physics of electromagnetic induction (EMI): Faraday’s Law
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~E(~x; t) · d~l = −
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~B(~x; t) · d ~A| {z }

Area integral



Physics of electromagnetic induction (EMI): Faraday’s Law
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~B(~x; t) · d ~A| {z }

Magnitude of intercepted magnetic flux (direction dependent!)



Physics of electromagnetic induction (EMI): Faraday’s Law
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Self-Inductance

If magnetic field is caused by own current in circle: U(t) = −LdI
dt

L is the inductances describing material coil characteristics (i.e. number of loops).



Assume that AC current is: I(t) = Ip sin(!t)
Show that U is phase shifted by 90 degrees and
that the involved amplitudes are frequency
dependent. How is that differences from a
’normal’ R-circuit?



Self-Inductance

U(t) = −L d
dt
I = −L d

dt
(Ip sin(!t)) = −LIp! cos(!t) = −LIp! sin
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EMI in geophysics

Note: We will consider the sub-surface as an R-L circuit.



EMI in geophysics

EMI analysis the ratio of secondary and
primary voltage in receiver coil.
EMI analysis the signal also in terms of
phase shifts (in-phase, quadrature)

Us
Up

= −L23L12
Ll2L13

„
1

1+¸2
(¸2 + i¸)

«
¸ = ! Ll2

Rl2

Where does this come from? Derive on
Blackboard.



EMI in geophysics: Detailed derviations for a three loop system

We control the current in the primary circuit
(indexed with loop 1). We choose the notation of
complex exponentials to describe the oscillating
AC input current in loop 1 Il1:

Il1(t) = I1e
i!t = I1(cos(!t) + i sin(!t))

→ This will initiate a time variable B field
(Ampère-Maxwell law ∇×H = j + @D

@t
)

→ This B field intersects loop 2 (sub-surface)
and lope 3 (receiver).

→ Which voltage is induced at in loops 2 and 3
because of loop 1?



EMI in geophysics: Detailed derviations for a three loop system

Using Faraday’s law:

Ul2 = −L12
dIl1
dt

= i!L12I1e
i!t

L13 is hereby a coupling factor that accounts for
the relative orientation between the loops (e.g.,
incl. loop orientation.)
The same holds for the induced potential at loop
3 which we call Up for primary potential:

Up = −L13
dIl1
dt

= −i!L13I1e
i!t



EMI in geophysics: Detailed derviations for a three loop system

Which current’s do the induced potentials in loops
2 and 3 drive? Ohm’s law will tell us, but we need
to extend it to include self-inductance for the AC
case. For loop 2 we therefore define the
impedance:

Zl2 = Rl2 + i!Ll2

here Ll2 is called the inductance of the
sub-surface. It is a material property. Do not
confuse it with the coupling factors. Now extend
Ohm’s law to:

Ul2 = Zl2 · Il2|{z}
yet unknown.

= −i!Ll2I1e
i!t



EMI in geophysics: Detailed derviations for a three loop system

Therefore the (eddy) current in the subsurface is:

→ Il2 = − i!L12I1

Rl2 + i!Ll2
e i!t

Let us collect the sub-surface material properties
in an induction parameter ¸:

¸ = !
Ll2
Rl2

so that:
Il2 = −L12

Ll2

i¸I1

1 + i¸
e i!t



EMI in geophysics: Detailed derviations for a three loop system

The two voltages induced in our receiver loop 3
are:

Up = −L13
dIl1
dt

= −i!L13I1e
i!t

Us = −L23
dIl2
dt

= i! L23L12

Ll2

i¸
1+i¸

e i!t

The indices s and p refer to secondary and
primary, respectively.



EMI in geophysics: Detailed derviations for a three loop system

The receiver evaluates the ratio of secondary and
primary induced voltage:

Us
Up

= −L23L12

Ll2L13

i¸

1 + i¸

We can rewrite this, so that imaginary and real
part become more clear (shown in exercises):

Us
Up

= −L23L12

Ll2L13

„
1

1 + ¸2
(¸2 + i¸)

«



EMI in geophysics: FDEM framework

This is the key result.

Us
Up

= −L23L12
Ll2L13

„
1

1+¸2
(¸2 + i¸)

«
¸ = ! Ll2

Rl2

Because the transmitter sends a harmonic,
continuous signal there is not much information in
time. Instead, the response in the receiver is
analysed in terms of frequencies and phase
offset (a. k. a. FDEM - frequency domain
electromagnetics.)
How can we interpret this?



EMI in geophysics: FDEM framework

This is the key result.

Us
Up

= − L23L12

Ll2L13| {z }
coupling factor

„
1

1 + ¸2
(¸2 + i¸)

«
| {z }

response function Q

The ratio is a complex number. What does this
mean? The magnitude of |Q| tells us about the
magnitude of Us relativ to Up. The phase angle
(\Q) informs us about phase shifts between Us
and Up. It is governed by sub-surface properties,
depending on whether the resistive o the
inductive part are more relevant (¸).
→ Exercises!
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In-Phase and Quadrature Components
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Application examples

Reference:
2015-2018, GeoSci Developers, CC-BY 4.0



Application examples
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Resistive and conductive limits

– If ¸→∞ we have a very good conductor
and the secondary field is essentially 180◦

out of phase with primary field.
– If ¸→ 0 very poor conductor (or a good

resitor) and secondary field is 90◦

out-of-phase.



So which parameter does EMI measure?

– The three loop system is highly idealized and
lends itself to ’anomaly’ hunting, but not for a
rigorous derivation of the sub-surface (incl.
layer thickness,...)

– The in-phase component is sensitive to the
Resistivity

– The inductance L is a function of electrical
(ac) conductivity.

– The inductance is also sensitive to magnetic
susceptibility.



EMI there is a lot more.

– There are many ways to explore EMI data.
– The in-phase component is often sensitive to

the resistivity
– The inductance L is a function of electrical

(ac) conductivity which appears in the
quadrature component.

– The inductance is also sensitive to magnetic
susceptibility



Application examples

Reference:
Doolittle & Brevik, Geoderma 223–225 (2014) 33–45



Application examples - soil moisture proxies

Reference:
André et al., 2012, J. Applied Geophysics

”..A particularly strong evidence of the influence of cultural operations on soil electrical conductivity is the relatively high values observed for plot B (see Fig. 1),
resulting from the use of heavy machines during too wet soil conditions for the preparation of this plot to vine plantation and which induced soil compaction..”



Application examples - waste disposal sites

Reference:
Marchetti et al., Annals of Geophysic, 2002, https://doi.org/10.4401/ag-3519

Note the frequency dependent change of anomalies in quadrature map.



Application examples - sea ice

Reference:
Photo: Alfred Wegener Institute, Sea Ice Group



Application examples

Reference:
Photo: Alfred Wegener Institute, Sea Ice Group



Application examples

https://www.youtube.com/watch?v=9LYBtqo3zgQ
Reference:
Photo: Alfred Wegener Institute, Sea Ice Group



Application examples

Reference:
Figure 2.21 in IPCC, 2021: Chapter 2. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change



Frequency depdendence

¸ = !
Ll2
Rl2

Why not increase the frequency by a lot to increase the signal-to-noise ratio?

→

Explore wave propagation which will lead us into seismics.



Maxwell Equations

∇ · ~D =  (Gauss)
∇ · ~B = 0 (Gauss)

∇× ~E = −@
~B

@t
(Faraday)

∇× ~H = —0
~J+

@~D

@t
(Ampére-Maxwell)

~D = ""0
~E(materials: electric field, dielectric field)

~H = ——0
~B (materials: magnetizing field, magnetic induction)

~j = ff~E (Ohm’s law)

You don’t need to solve these equations, but remember what they mean and in
which (geophysical) areas they are important.



Magnetic Method

∇ · ~D =  (Gauss)
∇ · ~B = 0 (Gauss)

∇× ~E = −@
~B

@t
(Faraday)

∇× ~H = —0
~J+

@~D

@t
(Ampére-Maxwell)

~D = ""0
~E(materials: electric field, dielectric field)

~H = ——0
~B (materials: magnetizing field, magnetic induction)

~j = ff~E (Ohm’s law)



Resistivity Method (no time dependencies)

∇ · ~D =  (Gauss)
∇ · ~B = 0 (Gauss)
∇× ~E = 0 (Faraday)
∇× ~H = —0

~J+ 0 (Ampére-Maxwell)
~D = ""0

~E(materials: electric field, dielectric field)
~H = ——0

~B (materials: magnetizing field, magnetic induction)
~j = ff~E (Ohm’s law)



Induction Method (low-frequency time dependency)

∇ · ~D =  (Gauss)
∇ · ~B = 0 (Gauss)

∇× ~E = −@
~B

@t
(Faraday)

∇× ~H = —0
~J+ 0 (Ampére-Maxwell)

~D = ""0
~E(materials: electric field, dielectric field)

~H = ——0
~B (materials: magnetizing field, magnetic induction)

~j = ff~E (Ohm’s law)

Note: Displacement current in Ampére-Maxwell remains zero. We show later why.



Prediction of electromagntic waves

Taking the curl of Faraday and Ampere-Max results in a wave equation. This
explains the existence of electromagnetic waves important, e.g., in the radar
method.

∇2 ~E = —ff
@ ~E

@t
+ —›

@2 ~E

@t2



Wave Equation

∇2 ~E| {z }
Wave

= —ff
@ ~E

@t
+ —›

@2 ~E

@t2| {z }
Wave

Two times space, two times time gives you (undamped) waves.



Diffusion Equation

∇2 ~E| {z }
Dif f usion

= —ff
@ ~E

@t|{z}
Dif f usion

+—›
@2 ~E

@t2

Two times space, one time time gives you diffusion.
Compare, e.g., with Darcy’s law / groundwater head.



What is the electrical permittivity?

X The magnetic permeability (— = —0—r ) is the
response of a material to a magnetic field
(dia-, para-, ferro-,...)

– The electric permittivity (" = "0"r ) is the
response of a material to an electric field.



What is the electrical permittivity?

Image: Public domain.



Harmonic waves

Assume ~E = ~E0e
i!t

∇2 ~E = —ff
@ ~E

@t
+ —›

@2 ~E

@t2

then straightforwardly:

∇2 ~E = i!—ff~E − !2—›~E



Harmonic waves

Assume ~E = ~E0e
i!t

∇2 ~E = —ff
@ ~E

@t
+ —›

@2 ~E

@t2

then straightforwardly:

∇2 ~E = i!—ff~E − !2—›~E

Assume ff = 10−4 S/m (resistive soil), "r = 10, "0 = 8:89 · 10−12s4A2m−3kg−1.
At which frequencies are both pre-factors of RHS approximately equal?



Harmonic waves

Assume ~E = ~E0e
i!t

∇2 ~E = —ff
@ ~E

@t
+ —›

@2 ~E

@t2

then straightforwardly:

∇2 ~E = i!—ff~E − !2—›~E

→ f = ff
2ı"0"r

≈= 180 kHz This is much higher than what is used within the
induction method.
Electromagnetic waves become relevant, e.g., in the MHz range used in
ground-penetrating radars.



Harmonic waves in the low-frequency approximation

∇2 ~E = i!—ff~E| {z }
Damping term

or 1D:

@2

@z2
~E = i!—ff~E| {z }

Damping term

This can be solved using a damped wave:

E = Ae−kze i(!t−kz)

with:
k =

r
!—ff

2



Skin effect

1

0:5

−0:5

−1

depth(z)

amplitude(A)
– Higher frequencies are damped

more quickly.
– Hence, if we increase frequency in

the Slingram method we decrease
the depth penetration.



The end of induction: Word Cloud

Induction method conceptualized with three loops
Induction sensitive to (ac) electrical conductivity, resistivity, magnetic
susceptibility
In-phase and out-of-phase (quadrature components)
Resistive, conductive limits.
Upper frequency barrier (tens of kHZ, both in terms of waves and in terms of
attenuation)
Wave equations, damping, diffusion
Skin depth


